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Problem Set #7

In the following, – denotes a isomorphism of groups.
Exercise 0 :
Let G be a finite abelian group with |G| “ n, we will see next week that xn “ e. Let
k ą 0 be an integer such that gcdpk,nq “ 1. Prove that every g P G can be written in
the form g “ xk for some x P G.

Solution :
gcdpk,nq “ 1 ñ Dr, s P Z such that rk` sn “ 1. Now, by Lagrrange’s theorem. gn “ e for
all g P G. But,

g “ g1
“ grk`sn

“ pgr
q

k
¨ pgn

q
s
“ pgr

q
k.eS

“ pgr
q

k

Take x “ gr to get xk “ g.

Exercise 1 :
In GLpn,Cq and SLpn,Cq define the subgroups of scalar matrices

CˆI “ tλI : λ ‰ 0 in Cu ΩnI “ tλI : λ P Ωnu

where Ωn are the complex nth roots of unity.

(a) Prove that CˆI and ΩnI are normal in GLpn,Cq and SLpn,Cq res-
pectively.

(b) Prove that GLpn,Cq{CˆI – SLpn,Cq{ΩnI
Hint : Use the Second Isomorphism Theorem. If N “ CˆI show that

N ¨ SLpn,Cq “ GLpn,Cq

l

Solution :

(a) If g P λI, (λ ‰ 0) then g commutes with every A P GLnpCq, so
ApλIqA´1 “ λI P CˆI for all A P GNpCq and CˆI normal in GLnpCq.
Likewise if λ P Ωn, λI now belongs to SLnpCq since detpλIq “ λn¨I “
1 ¨ I “ I, and again we have Bpλ ¨ IqB´1 “ λI, @B P SLnpCq ñ ΩnI
is normal in SLNpCq.

(b) First, note that any A P GLnpCq is λB with detpBq “ 1, for a suitably chosen
a ‰ 0 in C. If n “ detpAq, it has nth roots λ P C (λn “ µ) and then B “ 1{λA
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has detpBq “ p1{λqn ¨ detpAq “ 1{µ ¨ µ “ 1. Thus if N “ C˚I, we have N is a
normal group of GLnpCq and GLnpCq “ CˆI ¨ SLnpCq.
Now apply 2nd Isomorphism theorem taking A “ SLnpCq, N “ CˆI. Then

AXN “ SLnpCq X C
ˆI “ tλI : λ ‰ 0 in C and detpλIq “ λn is “ 1u

That means λ is an nth root of unity, so AXN “ ΩnI and

GLnpCq “ AN{N » A{pAXNq “ SLnpCq{ΩnI

Exercise 2 :
If H is a subgroup of finite index in a group G, prove that there are only finitely many
distinct “conjugate” subgroups aHa´1 for a P G.
Solution :
Given a P G, and h P H, the element x “ ak conjugates H to the conjugates H to the
subgroup pahqHpahq´1 “ ahHh´1a´1, since pxyq´1 “ y´1x´1. But hHh´1 “ H, for all
h P H, so pahqHpahq´1 “ aHa´1 for all h P H.
The group G is a union of n disjoint cosets a1H “ H, a2H, . . . , anH, pn “ |G{H|q since
H has finite index. All x P anH give the same ”conjugate” xHx´1, so there are at most n
distinct conjugates, H “ eHe´1, a2Ha´1

2 , . . . , anHa´1
n .

Exercise 3 :
Let G “ pRˆ, ¨ q be the multiplicative group of nonzero real numbers, and let N be the
subgroup consisting of the numbers ˘1. Let G1 “ p0,`8q equipped with multiplication as
its group operation. Prove that N is normal in G and that G{N – G1 – pR,`q.
Solution :

(a) G is abelian so all subgroups are normal ; to see G{N » G1 via first Iso-
morphism theorem. Let φ : G Ñ G1 be the squaring map f pxq “ x2. This is a
homomorphism since φpxyq “ pxyq2 “ x2y2 “ φpxqφpyq. It is surjective since
every x ą 0 is φp

?
xq. Kerpφ´ “ t˘1u. By F.I.T, G{N » G1.

(b) To see G1 “ pp0,`8q, ¨q » pR,`q. Taking φpxq “ lnpxq. This is a bijection
and lnpxyq “ lnpxq ` lnpyq so ln : G1 Ñ pR,`q is a group ».

Exercise 4 :
If H is a subgroup of G, its normalizer is NGpHq “ tg : gHg´1 “ Hu. Prove that

(a) NGpHq is a subgroup.

(b) H is a normal subgroup in NGpHq.
(c) If H Ď K Ď G are subgroups such that H is a normal subgroup in K,

prove that K is contained in the normalizer NGpHq.
(d) A subgroup H is normal in G ô NGpHq “ G.

Note : Part (c) shows that NGpHq is the largest subgroup of G in which H is normal.
Solution :
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(a)Trivial. If g1, g2 P NGpHq then

g1g2 ¨H ¨ pg1g2q
´1
“ g1pg2Hg´1

2 qg
´1
1 “ g1Hg´1

1 “ H

so g1g2 P NGpHq. Obviously, g “ e is in NGpHq. Finally, g P NpHq ñ gHg´1 “

H, ñ H “ g´1Hg “ g´1Hpg´1q´1, so g´1 P NGpHq. Finally, g P NpHq ñ
gHg´1 “ H ñ H “ g´1Hg “ g´1Hpg´1q´1 so g´1 P NpHq. Done.

(b) H is normal in NGpHq. Really trivial : g P NpHq ñ gHg´1 “ H, and clearly
H Ď NGpHq.
(c) Suppose H Ď K are subgroups of G and that H is a normal subgroup

K ( kHk´1 “ H, @k P K). Prove that K Ď NGpHq. Totally obvious
from definition of NGpHq.

(d) pñq H normal subgroup of G ñ gHg´1 “ H, @g P G ñ G “ NGpHq. pðq
NGpHq “ G ñ gHg´1 “ H, @g ñ H is normal subgroup of G.

Exercise 5 :
If x, y P G, products of the form rx, ys “ xyx´1y´1 are called commutators and the
subgroup they generate

rG,Gs “ x xyx´1y´1 : x, y P G y

is the commutator subgroup of G. Prove that

(a) The subgroup rG,Gs is normal in G.

(b) The quotient G{rG,Gs is abelian.

Hint : In (a) recall that a subgroup H is normal if αgpHq “ gHg´1 Ď H for all g P G.
What do conjugations αg do to the generators rx, ys of the commutator subgroup ?
Solution :

(a) If x P G, αxpgq “ xgx´1 takes commutators to commutators :

αxpra, bsq “ αxpaba´1b´1q

“ xpaba´1b´1qx´1

“ pxax´1q ¨ pxbx´1q ¨ pxpa´1qx´1q ¨ pxpb´1qx´1q

“ αxpaqαxpbqαxpaq´1αxpbq´1

“ rαxpaq, αxpbqs

rαxpg´1q “ pαxpgqq´1, @g].
Thus each operator αx maps generators of rG,Gs to generators : if S “ ( the
set of all commutators rx, ys, x, y P G) then αxpSq Ď S. We must show this
ñ αxpă S ąq Ďă S ą, and that will prove normality of ă S ą“ rG,Gs.
In an earlier problem set we showed that the generated subgroup ă S ą for any
set S Ď G consists of all ”words of finite length” w “ a1 . . . ar with r ď 8 and
ai P S or ai P S´1. But for any such word, αxpwq “ αxpa1q . . . αxparq is just ano-
ther word of the same type because if ai “ s P S, we have αxpsq P S, and if
ai “ s´1 for s P S then αxpaiq “ αxps´1q “ pαxpsqq´1 P S´1. Thus, for @x P G,
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αx maps words to words, and hence maps ă S ą to ă S ą. Applying this to
S “ pall commutatorsq, we see rG,Gs is normal in G.

(b) As for abelian property of the quotient group, let π : G Ñ G{rG,Gs “ Ḡ
be the quotient homomorphism. Then πpaba´1b´1q “ ē, by definition of rG,Gs.
But the e “ πpaqπpbqπpaq´1πpbq´1, which implies πpbqπpaq “ πpaqπpbq. (Ele-
ments in rangepπq commute. Since π is surjective, all elements in barG commute.

Exercise 7 :
Let G be the group of all real 2ˆ 2 matrices of the form

ˆ

a b
0 d

˙

such that ad ‰ 0 .

Show that the commutator subgroup rG,Gs defined in Exercise 3.3.28 is precisely the subset
of matrices in G with 1’s on the diagonal and an arbitrary entry in the upper right corner.
Solution :
We do a brute force calculation of a typical commutator ABA´1B´1, remembering that these

are the generators of rG,Gs. If A “
ˆ

a b
0 d

˙

, B “
ˆ

a1 b1
0 d1

˙

P G. Then ad, a1d1 ‰ 0 and

A´1 “ 1{padq
ˆ

d ´b
0 a

˙

, B´1 “ 1{pa1d1q
ˆ

d1 ´b1
0 a1

˙

. All diagonal entries are nonzero.

Then by direct matrix calculation

ABA´1B´1 “

ˆ

1 ´b1{d´ pa1bq{pdd1q ` pab1q{pdd1q ` b{d
0 1

˙

“

ˆ

1 1{pdd1qp´b1d1 ´ a1b` ab1 ` bd1q
0 1

˙

“

ˆ

1 b1pa´ d1q{pdd1q ` bpd1 ´ a1q{pdd1q
0 1

˙

Take d, d1 ‰ 0 and a1 such that pd1 ´ a1q{pdd1q “ 1 ; then the set a “ d1 (b can be arbitrary
in R). We see that the set S “ tABA´1B´1 : A,B P Gu contains all elements of the form

C “
ˆ

1 b
0 1

˙

, b P R.

Now rG,Gs “ă S ą. But note that S “ t

ˆ

1 b
0 1

˙

: b P Ru is already a group

under the matrix multiplication( pdetp
ˆ

1 b
0 1

˙

“ 1 ‰ 0, and

ˆ

1 b
0 1

˙ ˆ

1 b1
0 1

˙

“

ˆ

1 b` b1
0 1

˙

). Since ă S ą“ the smallest subgroup in G that contains the set of gene-

rators S, we must have ă S ą“ S “ rG,Gs “ t
ˆ

1 b
0 1

˙

: b P Ru

Exercise 8 :
Consider the group pZ{12Z,`q.
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(a) Identify the set of units U12.

(b) What is the order of the multiplicative group pU12, ¨ q ? Is this abelian
group cyclic ?

Hint : What is the maximal order of any element g P U12 ?
Solution :

(a) In Z{12Z the multiplication units are U12 “ tr1s, r5s, r7s, r11su.
(b) |U12| “ 4 ; elements can be have orders opxq “ 1, 2, 4 by Lagrange.

Now :

opr1sq “ 1; opr5sq “ 2; since r1s, r5s, r25s “ r1s are pairs as xk

opr7sq “ 2 since r1s, r7s, r7s2 “ r49s “ r1s

opr11sq “ 2 since r11s “ r´1s and p´1q2 “ r1s

This group is not cyclic since no x has order opxq “ 4.

Exercise 9 :
Let G be any group and let IntpGq be the set of conjugation operations αgpxq “ gxg´1 on
G. Prove that

(a) Each map αg is a homomorphism from G Ñ G.

(b) Each map αg is a bijection, hence an automorphism in AutpGq.
(c) αe “ idG , the identity map on G.

l.

Solution :
If αgpxq “ gxg´1 then αepxq “ exe´1 “ x, so αe “ IdG. Also,

αg1 g2pxq “ g1g2xpg1g2q
´1
“ g1pg2xg´1

2 qg
´1
1 “ αg1pαg2pxqq, @x

So, αg1 g2 “ αg1 ˝ αg2 .

αg´1 ˝ αgpxq “ αg´1 gpxq “ αepxq “ x

which implies αg´1 “ pαgq
´1.

Additional : Show that each αg is an isomorphism G Ñ G (so αg P AutpGqq. Since αg is
invertible, it is a bijection, one need only show αg is a homomorphism :

αgpxyq “ gxyg´1
“ gxg´1gxg´1

“ αgpxq ¨ αgpyq

Exercise 10 :
Show that the group IntpGq of inner automorphisms is a normal subgroup in AutpGq.
Note : The quotient AutpGq{IntpGq is regarded as the group of outer automorphisms
OutpGq.
Solution :
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Let α be an arbitrary automorphism and αg P IntpGq. If x P G. Then

α ˝ αg ˝ α´1pxq “ αpgα´1pxqg´1q

“ αpgqαpα´1pxqqαpg´1q

“ αpgq ¨ x ¨ αpg´1q “ αpgq ¨ x ¨ αpgq´1 “ ααpgqpxq

Therefore α ˝ αgα´1 is automorphism. Thus α ˝ IntpGq ˝ α´1 Ď IntpGq, and IntpGq is a
normal sugroup of AutpGq.

Exercise 11 :
The permutation group G “ S3 on three objects has 6 “ 3! elements

S3 “ te, p12q, p23q, p13q, p123q, p132qu

Prove by direct calculation the center of S3 is trivial (Note : you have proven that G –

IntpGq). Solution :
G “ S3 ; Show that G » IntpGq. This happens if and only if ZpGq “ peq. So our problem
is to compute ZpS3q and show it is trivial. For this permutation group we can list all
its elements and compute the 6 ˆ 6 multiplication table shown above. We have S3 “

te, p1, 2q, p1, 3q, p2, 3q, p1, 2, 3q, p1, 3, 2qu. We omit these routine calculations (they may be
simplified by noting that if x “ p1, 2q and y “ p1, 2, 3q. Then p1, 3, 2q “ y´1 and opyq “ 3
because

p1, 2, 3qp1, 3, 2q “ p1, 3, 2qp1, 2, 3q “ e

p1, 2, 3q2 “ p1, 3, 2q

p1, 2, 3q3 “ e

Obviously x2 “ e, since p1, 2qp1, 2q “ e (all the 2-cycle have order “ 2). Finally, xyx “ y´1,
by direct calculation. That means S3 “ă x, y ą is isomorphic to the dihedral group D3,
which has trivial center because pn “ 3 is odd) )
Even if you don’t adopt these tricks it is still simple (but tedious to compute the multipli-
cation table ZpGq can be read out of this table as shown above the table. Inspection shows
that g “ e is the only element in S3.
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Exercise 12 :
For any group G prove that the commutator subgroup rG,Gs “ă xyx´1y´1|x, y P G ą is
a characteristic subgroup that is for any σ P AutpGq, we have σprG,Gsq “ rG,Gs.
Hint : What does an automorphism do to the generators of rG,Gs ?
Note : This example shows that if G is abelian its automorphism gorup may nevertheless be
noncommuative (while IntpGq is trivial).
Solution :
If c “ rx, ys is any commutator in S then

αpxq “ αpxyx´1y´1
q “ αpxqαpyqαpxq´1αpyq´1

“ rαpxq, αpyqs

is just another commutator in S is again in S is again in S because

rxys´1
“ pxyx´1y´1

q
´1
“ yxy´1x´1

“ ry, xs

is a commutator in S. Thus S “ S´1 “ SY S´1. Now rG,Gs “ă S ą means : a typical ele-
ment in rG,Gs is a word g “ c1c2 . . . c´r with r ă 8 and ci P S. Then αpgq “ αpc1q . . . αpcrq

is just another word in rG,Gs so αprG,Gsq Ď rG,Gs. Likewise, taking α´1 in place of α,
α´1rG,Gs Ď rG,Gs which yields the reverse inclusion rG,Gs Ď αrG,Gs Ď rG,Gs. So
αrG,Gs “ rG,Gs as claimed.

Exercise 13 :
If G is a group, Z is its center, and the quotient group G{Z is cyclic, prove that G must
be abelian.
Solution :
Let ā “ πpaq P G{Z (a P G) be a cyclic generator of G{Z, where π : G Ñ G{Z is the
quotient homomorphism. Let A “ă a ą in G. The product set A ¨ Z is a subgroup in G
because z, z1 P Z Ñ pa1z1q ¨ pazq “ pa1aq ¨ pz1zq P AZ.
Furthermore : πpAZq “ πpAq ¨ πpZq and πpZq “ ē (identity in G{Z) we get

πpAZq “ πpAq “ πtak : k P Zu “ tpāqk : k P Zu “ă ā ą“ G{Z

Thus if g P G, Dx P AZ such that πpxq “ πpgq, which implies gZ “ xZ, and in particular,
Dz0 P Z such that g “ g ¨ e “ xz0 P pAZq ¨ z0 “ AZ. Hence, G Ď AZ, so G “ AZ.
If xy P G, we can find ai P A, zi P Z such that x “ a1z1, y “ a2z2. But A “ă a ą is
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obviously abelian (as is any cyclic subgroup) and the zi P ZpGq commute with everybody,
so we get

xy “ a1z1 ¨ a2z2 “ a1a2 ¨ z1z2 “ a2a1 ¨ z2z1 “ pa2z2q ¨ pa1z1q “ y ¨ x

G is abelian.
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